top of page

Publications

Complete list of Published Work

​Iannacone MJ, Um P, Grubbs JI, van der Linden AM, Raizen DM. Quiescence Enhances Survival during Viral Infection in Caenorhabditis elegans. J Neuroscience (2024) Aug 28;44(35):e1700222024. doi: 10.1523/JNEUROSCI.1700-22.2024.

McDonagh A, Crew J, van der Linden AM. Dietary vitamin B12 regulates chemosensory receptor expression via the MEF2 transcription factor. G3: Genes, Genomes & Genetics (2022) May 4, doi: 10.1093/g3journal/jkac107

 

Knupp D, Jorgensen B, Alshareef S, Bhat, Grubbs J, Miura P#, and van der Linden AM#. Loss of circRNAs from the crh-1 gene extends mean lifespan in C. elegans. Aging Cell (2022) Jan 31, doi:10.1111/acel.13650 # corresponding authors

Nikooei T, McDonagh A, van der Linden AM. The salt-inducible kinase KIN-29 regulates lifespan via the class II histone-deacetylase HDA-4. MicroPubl Biology (2020) Aug 9, doi: 10.17912/micropub.biology.000289

Grubbs J, van der Linden AM, and Raizen DM. Regulation of sleep by KIN-29 is not developmental. MicroPubl Biology (2020) May 7, doi: 10.17912/micropub.biology.000247

Grubbs J, Lopes L, van der Linden AM, and Raizen DM. A salt-inducible kinase (SIK) is required for the metabolic regulation of sleep. PLoS Biology (2020) Apr 21; 18(4), doi: 10.1371/journal.pbio.3000220

Cortés-López M*, Gruner M*, Cooper D, Gruner H, Voda A, van der Linden AM#, and Miura P#. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics (2018) Jan 3;19(1):8 * authors equally contributed, # corresponding authors

Regalado JM, Cortez MB, Grubbs J, Link JA, van der Linden A, and Zhang Y. Increased food intake after starvation enhances sleep in Drosophila melanogaster. J Genet Genomics (2017) Jun 20;44(6):319-326.

Gruner M, Grubbs J, McDonagh A, Winbush A, and van der Linden AM. Cell-autonomous and non-cell-autonomous regulation of a feeding state-dependent chemoreceptor gene via MEF-2 and bHLH transcription factors. PLoS Genetics (2016) Aug 3;12(8): e1006237

Winbush A, Gruner M, Hennig GW, and van der Linden AM. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population. Journal of Neuroscience Methods (2015) July 15; 249: 66-74

 

Gruner M, and van der Linden AM. Plasticity of chemoreceptor gene expression: sensory and circuit inputs modulate state-dependent chemoreceptors. Worm Journal (2015) March 6, 4:2, e1023497

 

Gruner M, Nelson D, Winbush A, Hintz R, Yu L, Chung SH, Kim K, Gabel CV, and van der Linden AM. Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs. PLoS Genetics (2014) Oct 30, 10(10): e1004707

 

Pravosudov V, Roth TC, Forister M, LaDage LD, Kramer R, Schilkey F, and van der Linden AM. Differential hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees. Molecular Ecology (2013) Jan;22(2): 397-408

 

van der Linden AM#, Beverley M, Kadener S, Rodriguez J, Wasserman S, Rosbash M, and Sengupta P#. Genome-wide analysis of light and temperature-entrained circadian transcripts in C. elegans. PLoS Biology (2010) Oct; 8(10): e1000503. # corresponding authors

 

Nokes E, van der Linden AM, Mukhopadhyay S, and Sengupta P. Cis-regulatory mechanisms of gene expression in an olfactory neuron type in C. elegans. Developmental Dynamics (2009) Dec; 238(12): 3080-92

 

van der Linden AM, Wiener S, You Y, Kim K, Avery L, and Sengupta P. The EGL-4 PKG acts with the KIN-29 SIK and PKA to regulate chemoreceptor gene expression and sensory behaviors in C. elegans. Genetics (2008) Nov; 180(3): 1475-91

 

van der Linden AM, Nolan KM, and Sengupta P.  KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO Journal (2007) 26(2): 358-70

 

Bauer Huang SL, Saheki Y, VanHoven MK, Torayama I, Ishihara T, Katsura I, van der Linden A, Sengupta P, and Bargmann CI. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Development (2007) Nov 6: 2:24

 

Fitzgerald K, Tertyshnikova S., Moore L., Bjerke L., Burley B., Cao J., Carroll P., Choy R., Doberstein S., Dubaquie Y., Franke Y., Kopczynski J, Korswagen H, Krystek SR, Lodge NJ, Plasterk R, Starrett J, Stouch T, Thalody G, Wayne H, van der Linden A, Zhang Y, Walker SG, Cockett M, Wardwell-Swanson J, Ross Macdonald P, and Kindt RM. Chemical genetics reveals an RGS/G-protein role in the action of a compound. PLoS Genetics (2006) 2(4)

 

van der Linden AM and Plasterk RHA (2004) Shotgun cloning of transposon insertions in the genome of Caenorhabditis elegans. Comp Funct Genomics 5(3): 225-29

 

Simmer F*, Moorman C*, van der Linden AM*, Kuijk E, van den Berghe PV, Kamath R, Fraser AG, Ahringer J, and Plasterk RHA. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biology (2003) 1: 77-84 * authors equally contributed

 

van der Linden AM, Moorman C, Cuppen E, Korswagen HC and Plasterk RHA. Hyperactivation of the G12-mediated signaling pathway in Caenorhabditis elegans induces a developmental growth arrest via protein kinase C. Current Biology (2003) 13: 516-521

 

Cuppen E, van der Linden AM, Jansen G, and Plasterk RH. Proteins interacting with Caenorhabditis elegans Gα subunits. Comp Funct Genomics (2003) 4(5): 479-91

 

van der Linden AM, Simmer F, Cuppen E, and Plasterk RHA. The G-protein β-subunit GPB-2 in Caenorhabditis elegans Regulates the Goα-Gqα Signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics (2001) 158: 221-235

 

Korswagen HC, van der Linden AM and Plasterk RHA (1998) G-protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO J. 17: 5059-5065

 

 

bottom of page