top of page

Current Projects

Metabolic regulation of sleep

Sleep and metabolic processes are intricately connected, and this association has important clinical implications; for example, short sleep is associated with obesity and type-2 diabetes. We investigate the genes and neurons that govern these sleep-metabolic interactions. Our recent studies have shown that the conserved salt-inducible kinase 3 (SIK3) pathway plays an important role in the metabolic regulation of different sleep states of C. elegans, such as developmentally-timed sleep (analogous to circadian sleep) and stress-induced sleep (analogous to sickness sleep). SIK3 and their targets in worms, mice and human are highly conserved. Currently, we are investigating how SIK3 coordinates sleep-metabolic interactions using genetic and neural approaches as well as high-throughput behavioral analyses, and why this pathway is important for health.KIN-29/SIK is a key node in connecting sleep and metabolic homeostasis. Our lab currently studies the role of KIN-29/SIK in the regulation of sleep and its interactions to metabolism, which has the unique potential to investigate the link between sleep disorders and metabolic syndromes.

The role of circular RNAs in aging and age-related diseases

Aging involves the progressive accumulation of deleterious molecular changes that leads to age-related physiological declines and diseases. We investigate a newly appreciated class of non-coding endogenous RNAs, called circular RNAs, which are mostly generated by back-splicing events from known protein-coding genes. Our recent studies have shown that these circRNAs show a progressive and massive accumulation during aging on a genome-wide level in C. elegans. No clear function is known for these age-accumulated circRNAs, or for most of the thousands of circRNAs discovered. Currently, we use next-generation sequencing approaches, genome-editing, and behavioral analysis to uncover regulatory mechanisms and functions of circRNAs in aging, and their possible role in age-related diseases.

Regulation of chemoreceptor gene expression by diet and starvation

We are also interested in understanding the effects of environmental and internal signals on behavior and gene expression. We have published several papers on dynamic changes in olfactory gene expression depending on the feeding state of the free-living nematode C. elegans, which could potentially gain insight into how parasitic nematodes and disease-carrying insects seek out and leave their host based on their nutritional status.

bottom of page